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Abstract. I t  is shown analyticall) that  the false eigenenergies of a potential obtained b) 
the method of Hill determinants are  the physical energies of a different potential. 

Recently, Killingbeck (1986) has observed numerically a relationship between the false 
eigenvalues, as obtained by the Ginsberg-Killingbeck (Ginsberg 1982, Killingbeck 
1986) version of the Hill determinant method, for the potential - r - ’ + r + r 2  and the 
true energies for the potential r - ’  - r + r2 .  In the present comment we have demon- 
strated analytically that the following is a general rule. Given a potential V ( r )  = 
a /  r + br + cr2 when c > 0, those eigenvalues identified as false by Killingbeck’s method 
are in fact true eigenvalues of the associated potential V (  r )  = - a / r  - br + cr’. 

For the perturbed Coulomb potential 
V (  r )  = a /  r + br + cr2 c > o .  ( 1 )  

Killingbeck has shown numerically that the false eigenvalues reveal themselves by 
having negative values for the expectation values of r and r - ’  obtained by the technique 
developed by him (Killingbeck 1985). If a potential term Ar“ is added to the Hamil- 
tonian the change in energy according to the first-order perturbation theory is 

where A is quite small. Killingbeck (1986) has applied this equation to compute ( r )  
and ( r - ’ )  for the potential (1)  and obtained the negative results for some values of the 
parameters. (For  a more detailed explanation of the ( r ” )  computations the reader is 
referred to equation (5) of Killingbeck (1986).) We explain here why the Hill deter- 
minant method yields such unphysical results. 

By applying the simple power-series ansatz 

6 E  = A ( r “ )  (2)  

I 

- p r ’ - a r )  A , r“  
n=O 

(3) 

to the radial Schrodinger equation 

the differential equation (4)  is transformed to the difference equation 

with 

- ~ ~ + + [ ~ ( r ) + ~ ( 1 + l ) / r ~ ] + =  E$ (4) 

b,A,+I+ u ,A ,  + c,A,, - 1  + d,,A,,-? = O  n > O  (5) 

b, = ( n  + 1 ) (  n + 21 + 2 )  
a, = -2a( n + I +  1)  - a 
C ,  = -2/3(2n+21+ l )+a’+  E 
d n = 4 a p - b  
p=;VG>0 A- ,  = A - ,  = 0. 
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The eigenvalue condition of the Hill determinant for large N is 

det Q V  = O  

a, bo 0 0 . . .  
c1 a,  b ,  0 . . . 

QN = d2 c. a2 b2 . . . I 0 . . .  0 d,\-l C \ - l  ow-I 

It may be noted that 

( 7 )  

A N  =(-l)’A,det Q h / ( b o b l . .  . b ’ - , )  (8)  

which shows that the vanishing of det Q,, ensures the vanishing of A,. Killingbeck 
(1986) has computed the eigenvalues from the zeros of A N  in terms of the parameter 
E for some large N and obtained the physical eigenenergies for the potential (1) with 
a sufficiently large positive CY. As soon as the sign of a is reversed and made negative 
the unphysical eigenvalues are produced in this method. When we change CY + -CY in 
equation ( 7 )  we get the determinant QL which is completely different from det Q ,  
and therefore we get different eigenvalues from the zeros of the two determinants. 
However, in ( 7 )  if we d o  not change the sign of a, but change the signs of a and b, 
i.e. a + a, a + -a  and b + -b  we get the determinant QY, with the following property: 

(9) 

Thus the false eigenvalues of the potential a /  r + br + cr2 obtained from det Q t  = 0 are 
the physical eigenvalues of the potential - a / r  - br + cr2 obtained from det Q$ = 0. 
Killingbeck (1986) discovered this finding by the process of computation. Here we 
establish the result analytically. 

Killingbeck (1986) has applied equation ( 2 )  for computation of ( r ” )  from det Q’\ = 0 
which gives negative values of ( r )  and ( r - l ) .  It may be noted that the zeros of det 0’; 
are identically the same as those of det Q,, leading to the same value of 6E, but the 
sign of A in equation ( 2 )  is reversed. Thus the false eigenvalues of the table 1 of the 
paper of Killingbeck (1986) should be reinterpreted accordingly. If x and y are the 
expectation values of r and r-I as obtained from ( 2 )  for the potential - r - ’  + r +  r 2  in 
case of false eigenvalues derived from the equation det Qi = 0, the false energies agree 
with the true energies for the potential r - ’  - r + r7 and the expectation values of r and 
r-l for the potential r - ’  - r + r2  according to equation ( 2 )  are -x and - y  giving positive 
sign to the expectation values when x and y are negative. 

det Q’k = ( - l )&  det Q’& . 
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